China factory Surface Painting Cast Iron Coupling HRC 180 hrc coupling

Product Description

HRC Coupling : HRC70, HRC90, HRC110, HRC130, HRC150, HRC180, HRC230, HRC280

Cast iron material
Standard and non-standard coupling available
With high quality and competitive price

 

HRC Type B
Coupling Size Max.Bore Pilot Bore Keyway screw size Hub Width Shoulder Width
70 32 8 M6 23.5 20
90 42 10 M6 30.5 26
110 55 10 M10 45.5 37
130 60 15 M10 47.5 39
150 70 20 M10 56.5 46
180 80 25 M10 70.5 58
230 100 25 M12 90.5 77
280 115 30 M16 105.5 90

HRC Type F&H
coupling Size Taper Bush size Max. Bore C D
    mm inch mm mm
70 1008 25 1″ 23.5 20
90 1108 28 1 1/8″ 23.5 19.5
110 1610 42 1 5/8″ 26.5 18.5
130 1610 42 1 5/8″ 26.5 18
150 2012 50 2″ 33.5 23.5
180 2517 65 2 1/2″ 46.5 34.5
230 3571 75 3″ 52.5 39.5
280 3525 95 3 11/16″ 66.5 51

   

 

Standard Or Nonstandard: Standard
Shaft Hole: 10-32
Torque: 70-80N.M
Bore Diameter: 14mm
Speed: 4000r/M
Structure: Rigid
Samples:
US$ 2/Piece
1 Piece(Min.Order)

|
Request Sample

Customization:
Available

|

Customized Request

China factory Surface Painting Cast Iron Coupling HRC 180  hrc coupling

hrc coupling

Are There Any Safety Considerations When Using HRC Couplings in Rotating Machinery?

When using HRC (Highly Resilient Coupling) couplings in rotating machinery, several safety considerations should be taken into account to ensure the proper and safe functioning of the coupling and the connected equipment:

  • Proper Installation: It is crucial to follow the manufacturer’s guidelines and recommendations for the correct installation of the HRC coupling. Ensure that the coupling is mounted securely on the shafts and that all fasteners are tightened to the specified torque values.
  • Alignment: Adequate shaft alignment is essential for the smooth operation of the HRC coupling. Misalignment can lead to increased stress on the coupling and its elastomeric element, reducing its service life and possibly causing premature failure.
  • Torque Capacity: Before selecting an HRC coupling, verify that it has the appropriate torque capacity for the specific application. Using an undersized coupling can result in overloading, leading to coupling failure and potential damage to connected machinery.
  • Operating Conditions: Consider the environmental conditions and operating parameters of the machinery when choosing an HRC coupling. Factors such as temperature, humidity, and exposure to chemicals can affect the coupling’s performance and longevity.
  • Regular Inspection: Implement a regular inspection and maintenance schedule for the HRC coupling and the entire power transmission system. Check for signs of wear, corrosion, or any other issues that may require attention. Replace worn or damaged components promptly.
  • Emergency Stop: Ensure that the rotating machinery is equipped with a proper emergency stop mechanism to quickly shut down operations in case of unexpected events or coupling failure.
  • Overload Protection: Consider adding overload protection devices to the system to prevent excessive torque or shock loads from reaching the coupling and the connected equipment.

By adhering to these safety considerations and best practices, the risk of accidents, equipment damage, and downtime can be minimized, ensuring a safe and reliable operation of rotating machinery with HRC couplings.

hrc coupling

Can HRC Couplings Be Used in Both Horizontal and Vertical Shaft Arrangements?

Yes, HRC (Highly Resilient Coupling) couplings can be used in both horizontal and vertical shaft arrangements, making them versatile options for various applications.

Horizontal Shaft Arrangements: In horizontal shaft arrangements, the shafts are positioned parallel to the ground, and the rotational axis is horizontal. HRC couplings are commonly used in this configuration to transmit torque between two shafts with a certain level of misalignment. They are particularly effective in absorbing shock loads, dampening vibrations, and compensating for slight misalignments, which are often encountered in rotating machinery.

Vertical Shaft Arrangements: In vertical shaft arrangements, the shafts are positioned vertically, and the rotational axis is perpendicular to the ground. This configuration is commonly found in applications such as vertical pumps, vertical motors, and gearboxes. When using HRC couplings in vertical shaft arrangements, additional consideration is required to ensure that the coupling can support the weight of the connected equipment and accommodate any potential misalignment due to gravitational forces.

When selecting an HRC coupling for a vertical shaft arrangement, it is essential to choose a coupling with adequate torque capacity and stiffness to handle the weight of the equipment and any dynamic forces resulting from the vertical orientation.

In summary, HRC couplings are suitable for both horizontal and vertical shaft arrangements, providing reliable power transmission and compensating for misalignment and vibration in various mechanical systems.

hrc coupling

Selection of HRC Coupling for Specific Applications

Choosing the appropriate HRC coupling for a specific application requires careful consideration of several factors. Here are the steps to select the right HRC coupling:

  1. Identify Application Requirements: Understand the specific requirements of your application, including torque and speed requirements, operating environment, shaft misalignment, and space limitations.
  2. Calculate Torque and Speed: Determine the torque and speed values required for your application. This information will help you select an HRC coupling that can handle the expected load and rotational speed.
  3. Consider Misalignment: Evaluate the type and magnitude of misalignment that the coupling needs to accommodate. HRC couplings can handle angular, parallel, and axial misalignment to varying degrees, so choose a design that meets your misalignment needs.
  4. Check Space Constraints: Consider the available space for the coupling. If space is limited, you may need a compact HRC design or consider other coupling types that require less space.
  5. Choose Hub Material: Select the hub material based on the application environment. Standard HRC hubs are usually made of cast iron, but stainless steel or other materials may be necessary for corrosive or specialized applications.
  6. Explore Design Variations: Evaluate the various HRC coupling designs available, such as standard, spacer, flywheel, taper lock, brake drum, etc. Choose a design that best suits your application’s needs.
  7. Consider Environmental Factors: If your application operates in harsh conditions, consider factors such as temperature, moisture, chemicals, and potential contamination when choosing the HRC coupling.
  8. Check Installation and Maintenance: Consider the ease of installation and maintenance requirements of the selected HRC coupling. Some designs, such as taper lock or pilot bore, offer easier installation and removal.
  9. Consult Manufacturer Recommendations: Consult with the coupling manufacturer or a knowledgeable supplier to ensure you select the right HRC coupling for your specific application. They can provide valuable insights and recommendations based on their expertise.

By carefully evaluating these factors and selecting the appropriate HRC coupling, you can ensure optimal performance, reliability, and longevity for your mechanical system.

China factory Surface Painting Cast Iron Coupling HRC 180  hrc couplingChina factory Surface Painting Cast Iron Coupling HRC 180  hrc coupling
editor by CX 2023-08-08